Расчёт количества арматуры для разных типов фундамента

Содержание:

Определение сечений

Согласно нормативам, площадь сечения рабочей арматуры железобетонной конструкции должна составлять не менее 0,05% от площади поперечного сечения монолита. Допустим, вам нужно залить плиту размером 8*10 м толщиной 0,3 м. Площадь её поперечного сечения составит 8 м* 0,3 м = 2,4 м². 0,05% от этой цифры составляет 0,12 м² – или 12 см².

Теперь, ориентируясь на полученную цифру, подбираем диаметр арматуры вот по такой таблице:

Таблица подбора диаметров арматуры

Находим полученное значение (меньше нельзя, больше можно), нужные цифры в таблице подчёркнуты красным. Согласно табличным данным, при диаметре арматуры 14 мм каркас должен состоять из 8 стержней с шагом 125 мм. При диаметре стержней 12 мм, сетка должна состоять из 11 стержней с шагом 91 мм (округляем в большую сторону до 100 мм). В плоской плите у нас два ряда арматуры, поэтому и шаг между стержнями можно сделать в два раза больше – 200 мм.

Для фундаментной плиты под малоэтажный дом, арматура диаметром 12 мм, устанавливаемая с шагом 200, является усреднённым и самым оптимальным вариантом. Слишком маленький шаг арматуры в плите фундамента не позволяет бетону нормально проходить между прутьями каркаса при заливке, а слишком большой может сделать армирование и вовсе бесполезным, так как в этом случае бетону в зоне квадрата внутри ячейки, всё равно приходится работать на растяжение.

Диаметр 12 мм для стальной арматуры считается минимальным, даже когда плита фундамента имеет меньший размер. Если она формируется без проекта, необходим определённый запас прочности.

Принцип замены диаметров стальных стержней на композитные

Определение глубины заложения

Порядок нахождения предусматривает выявление факторов негативного влияния, которые зависят от:

  • геологических характеристик строительной площадки;
  • климатических особенностей региона;
  • наличия в проекте заглубленных подвалов.

На данном этапе работ находят места расположения на прочных грунтах. Основание не рекомендовано опирать на рыхлые и пластичные массивы, погружать в подпочвенные воды. Одним из серьезных признаков нестабильности является критическая отметка промерзания земляных пластов, приводящая к пучению.

Установив все критические моменты, определяют допустимую глубину дна котлована. Согласно СНиП в окончательном варианте она должна быть кратной 10 см. Например, получив 68 см, принимаете к исполнению —70 см.

Как работает арматура в ленточном фундаменте

Арматурный каркас необходим для компенсации осевых противонаправленных (растягивающих) нагрузок, возникающих в ленте при появлении деформирующих воздействий — изгибающих или скручивающих усилий.

Особенность бетона состоит в способности принимать гигантские давления без каких-либо последствий.

При этом, он практически беззащитен перед разнонаправленными усилиями, быстро покрывается трещинами и разрушается.

Поэтому для ленты крайне опасны любые усилия, приложенные в одной точке — например, боковые или вертикальные нагрузки пучения. Арматурные стержни предназначены для приема этих усилий на себя.

Существует горизонтальная (рабочая) и вертикальная арматура. Основные нагрузки принимают горизонтальные стержни.

Они имеют больший диаметр и рифленую поверхность, обладающую хорошим сцеплением с бетоном.

Вертикальные стержни выполняют две функции:

  • Фиксация рабочей арматуры в необходимом положении до момента заливки бетоном.
  • Частичная компенсация скручивающих усилий.

Первая задача основная, а вторая — дополнительная, поскольку наличие таких специфических нагрузок наблюдается довольно редко.

В большинстве случаев вертикальная (гладкая) арматура служит лишь опорной конструкцией, удерживающей рабочие стержни в необходимом положении до момента заливки.

Они довольно толстые, так как заливка — процесс с достаточно интенсивными воздействиями на каркас, сосредоточенными в одной точке (место падения тяжелого материала в опалубку), а также распределенными по всей длине (штыкование, обработка виброплитой).

Расчет арматуры А500С для столбчатого фундамента

При строительстве столбчатого фундамента, можно использовать арматуру ø10 мм. Применяется ребристая арматура для прутков которые располагаются вертикально, а горизонтальная арматура нужна лишь для того, что бы обеспечить надежную перевязку, для создания единого каркаса для столбика. Арматурный каркас для столбчатого фундамента, обычно содержит по 3-4 в каждом столбе, вся арматура должна иметь большую длину, чем сам столб. В случае если требуются столбы для фундамента с большим диаметром чем 20 см, то арматуры требуется большее количество и она должна быть распределена равномерно внутри столба.

Если нужны стандартные двух метровые столбы с диаметром 200 мм, то достаточно 4 прутка арматуры диаметром ø10 мм каждая, располагающихся на расстоянии по 100 мм друг от друга. Перевязка осуществляется в 4х местах, с помощью гладкой арматуры диаметром по ø6 мм.

Итого, для одного столба понадобится 2 м*4= 8 метров ребристой арматуры и 0.4 м*4 =1.2 метра гладкой арматуры.

Если нужно 30 столбов для фундамента, то расход ребристой арматуры составит 8м*30=240 метров, а расход гладкой арматуры 1.2 м*30=36 метров.

Пример расчета армирования фундамента

Попробуем рассчитать, сколько потребуется материалов для обустройства армирования конкретного ленточного фундамента с чертежами. Допустим, мы строим из строительных блоков (шириной 0,4 м)   небольшой загородный дом с габаритными (внешними) размерами 5×8 м. Характер почвы на нашем участке позволяет сделать высоту полосы 0,9 м, ее ширину 0,4 м, что соответствует ширине строительного материала стен. В арматурном каркасе для ленточного фундамента будем использовать продольные рабочие прутья диаметром 12 мм и □-образные поперечные хомуты, изготовленные из прутков диаметром 8 мм.

Армирование мелкозаглубленного ленточного фундамента:

На фото видно, что расстояние между рабочими продольными прутьями (0,4 м) и шаг □-образных поперечных хомутов (0,5 м) выбраны в соответствии с требованиями нормативных документов.

Проверяем относительное содержание продольных рабочих прутков в нашей железобетонной конструкции. Для этого воспользуемся следующими терминами и обозначениями:

  • h – высота фундамента (900 мм);
  • w – ширина фундамента (400 мм);
  • Sₒ – площадь поперечного сечения фундамента;
  • Sₐ – суммарная площадь поперечных сечений продольных прутьев (6 штук);
  • r – радиус продольного прутка (6 мм), который равен d/2, где d – диаметр прутка (в нашем случае d=12 мм);
  • D – относительное содержание рабочих прутков в «теле» фундамента.

Sₒ = h∙w = 900∙400 = 360000 мм²

Sₐ = 6∙π∙r² = 6∙3,14∙6² = 678,24 мм²

D = (Sₐ∙100)/ Sₒ = (678,24∙100)/360000 = 0,1884 ≈ 0,19 % (что в 1,9 раза превышает минимально допустимое значение, то есть схема армирования ленточного фундамента выбрана нами правильно).

Расчет количества продольных прутьев

Для того чтобы определить сколько стандартных продольных прутьев (6 м) нам необходимо, воспользуемся следующими величинами:

  • L – длина фундамента (8000 мм);
  • W – ширина фундамента (5000 мм);
  • P – периметр;
  • N – количество продольных элементов (в нашем случае 6 штук);
  • X – общая протяженность продольных прутьев.

P = (L+ W)∙2 = (8000 + 5000)∙2 = 26000 мм = 26 м

X = P∙N = 26∙6 = 156 м

К полученной величине необходимо добавить 20 % (материал для изготовления Г-образных или П-образных элементов для правильного армирования углов и обеспечения достаточного нахлеста при стыковке элементов).

Xдоп = X∙0,2 = 156∙0,2 = 31,2 м

Окончательная общая длина продольного арматурного прутка:

Xок = X + Xдоп = 156 + 31,2 = 187,2 м

Стандартная длина арматурного прутка составляет 6 м. Осталось посчитать, сколько таких прутков необходимо: Xок/6 = 187,2/6 = 31,2 ≈ 32 штуки.

Изготовление поперечных элементов и расчет количества материала

Укладка арматуры в ленточный фундамент невозможна без установки поперечных (вертикальных) элементов. Обычно, для этих целей используют □-образные хомуты. Варианты хомутов:

Как видно из представленного фото все три варианта отличаются технологией изготовления, но расход прутка во всех случаях приблизительно одинаковый. Длина прутка (Ø=8 мм), необходимого для изготовления одного хомута: (800+300)∙2+250 = 2450 мм.

Вариант № 1

  1. Отмеряем приблизительно 120 мм и с помощью приспособления для гибки выгибаем эту часть будущего хомута в виде крючка.
  2. На расстоянии 800 мм от крюка загибаем пруток под углом 90˚.
  3. Отмеряем 300 мм и делаем еще один загиб на 90˚.
  4. От этого угла откладываем 800 мм и гнем прут на 90˚.
  5. От полученного угла отмеряем 300 мм и загибаем второй крючок.

Вариант № 2

  1. Отмеряем от конца заготовки 250 мм и с помощью приспособления выгибаем эту часть на 90˚.
  2. Откладываем от полученного 800 мм и загибаем пруток под углом 90˚.
  3. Отмеряем 300 мм и делаем еще один загиб на 90˚.
  4. От этого угла откладываем 800 мм и гнем прут на 90˚.

Внимание! Место нахлеста прутков скрепляем точечной сваркой или 2÷3 скрутками из проволоки. Вариант № 3. Вариант № 3

Вариант № 3

  1. Отрезаем от прутка две заготовки длиной по 860 мм каждая и две по 360 мм.
  2. Складываем из них прямоугольник (выступ с каждой стороны составляет 30 мм).
  3. Скрепляем углы хомута сваркой или проволочной скруткой.

Теперь рассчитаем, сколько хомутов необходимо для армирования нашего фундамента:

Q = P/T (P – периметр ленты фундамента, T – шаг расположения поперечных хомутов)

Q = 26/0,5 = 52 штуки

Плюс нам потребуются дополнительные хомуты для усиления каркаса в углах (по 2 штуки с каждой стороны всех четырех углов, то есть дополнительно 16 хомутов). На ленточный фундамент необходимо изготовить 68 □-образных поперечных хомутов.

Длина заготовки для одного элемента составляет 2450 мм, то есть из одного стандартного прутка мы сможем изготовить только 2 хомута. Требуемое число прутков (Ø=8 мм) – 34 штуки.

Пример расчета несущей способности свайного отдельно стоящего фундамента

Рассчитать свайный фундамент под колонну про­мышленного здания на действие центральной нагрузки N = 1,0 МН. Материал ростверка — бетон класса В25 с расчетным сопротивлени­ем осевому растяжению Rbt= 1,05 МПа. Глубина заложения подош­вы ростверка по конструктивным соображениям принята равной h = 0,8 м. Грунтовые условия стро­ительной площадки: 1 — песок пылеватый (γ1= 0,0185 МН/м 3 , h1 = 3,6 м, E1 = 15 МПа); 2 — супесь пластичная (γ2= 0,0195 МН/м 3 , h2 = 1,7 м; Е2=17 МПа); 3 — песок плотный (γ3=0,0101 МН/м 3 , h3 = 2,2 м, E3 = 32 МПа); 4 — суглинок тугопластичный (γ4 =0.01 МН/м 3 , h4=3,4 м, E4=30 МПа). L/H—5,1.

Решение. Для заданных грунтовых условий проектируем свайный фундамент из сборных железобетонных свай марки С5,5-30, длиной L = 5,5 м, размером поперечного сечения 0,3×0,3 м и длиной острия l = 0,25 м. Сваи погружают с помощью забивки дизель-мо­лотом.

Найдем несущую способность одиночной висячей сваи, ориенти­руясь на расчетную схему, показанную на рис. 6.1, а и имея в ви­ду, что глубина заделки сваи в ростверк должна быть не менее 5 см.

Рис. VI.1

Площадь поперечного сечения сваи A = 0,3·0,3 = 0,09 м 2 , периметр сваи

По табл. 1.18(Приложение I) при глубине погружения сваи 6,5 м для песка мелкого, интерполируя, найдем расчетное сопротивление грунта под нижним концом сваи R = 2,35МПа.

По табл. 1.18(Приложение I) для свай, погружаемых с помощью дизель-моло­тов, находим значение коэффициента условий работы грунта под нижним концом сваи γcR =1,0 и по боковой поверхности γcf =1,0.

Пласт первого слоя грунта, пронизываемого сваей, делим на два слоя толщиной 2 и 0,8 м. Затем для песка пылеватого при сред­них глубинах расположения слоев h1 = l,8 м и h2 = 3,2 м, интерполи­руя, находим расчетные сопротивления по боковой поверхности сваи, используя данные табл. 1.19(Приложение I): f1= 0,0198 МПа, f2 = 0,0254 МПа.

Для третьего слоя грунта при средней глубине его залегания h3 = 4,45 м по этой же таблице для супеси пластичной с показате­лем текучести IL = 0,6, интерполируя, находим f3 = 0,0165 МПа.

Для четвертого слоя при средней глубине его расположения h4= 5,775 м для песка мелкого находим f4 = 0,041б МПа.

Несущую способность одиночной висячей сваи определим по формуле (6.4)

Ф= 1 =0,364 МН.

Расчетная нагрузка, допускаемая на сваю по грунту, составит:

F = 0,364/1,4 = 0,26 МН.

В соответствии с конструктивными требованиями зададимся шагом свай, приняв его равным а = 3b = 3·0,3 = 0,9 м. Далее определим требуемое число свай:

Окончательно примем число свай в фундаменте равным 4 и разместим их по углам ростверка.

Найдем толщину ростверка из условия (8.8):

По конструктивным требованиям высота ростверка должна быть не менее hp= 0,05+ 0,25 = 0,3 м, что больше полученной в результа­те расчета на продавливание. Следовательно, окончательно примем высоту ростверка равной 0,3 м.

Расстояние от края ростверка до внешней стороны сваи в соот­ветствии с конструктивными требованиями назначим равным lр = = 0,3·30+5=14 см, примем его окончательно, кратным 5 см, т. е. lp= 15 см. Расстояние между сваями примем равным: l=3b = 0,9 м.

Конструкция ростверка и его основные размеры показаны на рис. VI.1, б.

Найдем вес ростверка G3 = 0,025·0,3·1,5·1,5 = 0,0169 МН и вес грунта, расположенного на ростверке, Gгр = 0,5·1,5·1,5 ·0,0185 = 0,0208 МН.

Определим нагрузку, приходящуюся на одну сваю, по формуле:

Найдем вес свай:

G1= 4 (5,5·220·10 + 50·10) = 50800 H = 0,0508 МН.

Вес грунта в объеме АБВГ (см. рис. 6.1):

Вес ростверка был найден ранее: G3=0,0169 МН.

Давление под подошвой условного фундамента:

По табл. 1.12(Приложение I) для песка мелкого, на который опирается условный фундамент, с коэффициентом пористости е = 0,598 найдем значение удельного сцепления сп = 0,003 МПа.

По табл. 1.13(Приложение I) по углу внутреннего трения φn = 34°, который был определен ранее, найдем значение безразмерных коэффициентов: Mγ=l,55, Mq=7,22 и Мс=9,22.

Определим осредненный удельный вес грун­тов, залегающих выше подошвы условного фундамента:

По табл. 1.15. (ПриложениеI) для песка мелкого, насыщенного водой, при соот­ношении L/H>4 находим значения коэффициентов γс1 = 1,3 и γс2= 1,1.

По формуле (8.3) определим расчетное сопротивление грунта основания под подошвой условного фундамента:

Основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: Рср = 0,276 МПа

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10546 – | 7960 – или читать все.

93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)очень нужно

Расчет арматуры для плитного фундамента

Плитный  фундамент часто используют при строительстве коттеджей и дачных домов, а также других строений без подвального помещения. Он представляет собой бетонную плиту, армированную прутком в обоих перпендикулярных направлениях, при толщине фундамента более 20 см сетка выполняется в верхнем и нижнем слое.

До начала расчета необходимо определиться с маркой арматурного прутка. Для плитного фундамента, выполняемого на прочных непучинистых грунтах, где вероятность горизонтального сдвига здания ничтожна, допускается использовать  ребристый арматурный пруток класса A-I диаметром от 10 мм. Если грунт слабый, пучинистый либо здание стоит на уклоне – пруток необходимо выбирать не менее 14 мм в диаметре. Для вертикальных связей между нижней и верхней арматурной сеткой достаточно гладкого прутка с диаметром 6 мм класса A-I.

Материал стен также имеет значение, так как нагрузка здания существенно отличается у каркасных или деревянных домов и строений из кирпича или газобетонных блоков. В общем случае, для легких небольших строений допускается использовать пруток диаметром 10-12 мм, для кирпичных или блочных – арматуру 14-16 мм в диаметре.

Расстояния между прутьями в сетке обычно составляют 20 см и в продольном, и в поперечном направлении. Это означает, что на 1 метр длины дома необходимо уложить 5 арматурных прутков. Между собой перпендикулярные пересекающиеся прутки связывают мягкой отожжённой проволокой с помощью крючка для вязки или вязального пистолета.

Образец установленной арматуры для фундамента

Пример расчета

Дом из газобетонных блоков, устанавливается на плитный фундамент толщиной 40 см на среднепучинистых суглинках. Габаритные размеры дома – 9х6 метров.

  1. Поскольку толщина фундамента значительна, необходимо две арматурные сетки, а также вертикальные связи. Горизонтальные сетки для блочного строения на среднепучинистом грунте выполняют из армированного прутка диаметром 16 мм, вертикальные – из гладкого прутка диаметром 6 мм.
  2. Количество прутьев продольной арматуры вычисляют  так: длину большей стороны фундамента делят на шаг решетки: 9/0,2 = 45 продольных арматурных прутьев длиной 6 метров, а общее количество прутка равно 45·6 = 270 м.
  3. Аналогично находят количество прутка для поперечных связей: 6/0,2 = 30 прутков; 30·9 = 270 м.
  4. Общее количество прутка на две арматурных сетки равно:  (270+270)·2 = 1080 м.
  5. Вертикальные связи имеют длину, равную высоте фундамента. Их количество находят по числу пересечений продольных и поперечных арматурных прутков: 45·30 = 1350 штук. Их общая длина 1350·0,4 = 540 метров.
  6. Таким образом, для выполнения фундамента необходимо:
  7. 1080 метров прутка класса A-III D16;
  8. 540 метров прутка класса A-I D6.
  9. По ГОСТ 2590 находим его массу. Погонный метр прутка D16 весит 1,58 кг; метр прутка D6 – 0,222 кг. Вычисляем общую массу: 1080·1,58 = 1706,4 кг; 540·0,222 = 119,88 кг.

  10. Расчет вязальной проволоки зависит от применяемого инструмента. При вязке крючком средний расход проволоки равен 40 см на одно соединение. Количество соединений в одном ряду равно 1350, в двух – 2700. Расход проволоки составит 2700·0,4 = 1080 метров. Масса 1 метра проволоки с диаметром d=1,0 мм составляет 6,12 г. Для вязки арматуры фундамента потребуется 1080·6,12 = 6610 г = 6,6 кг проволоки.

Описание монолитного плитного фундамента

Площадь плитного фундамента соответствует площади здания по осям, иногда лишь ненамного превышая её для того, чтобы можно было установить облицовку с утеплением. Именно это отличает данный вид фундамента от прочих, и делает его наиболее надёжным в плане пространственной устойчивости. Однако, чтобы обеспечить её с учётом воздействующих нагрузок и прочностных характеристик грунта, плиту нужно грамотно спроектировать.

В определённых случаях требуется предусмотреть не плоский вариант, а ребристый, причём рёбра могут быть направлены как вниз, так и вверх. Первый вариант – это традиционный вид ребристой плиты. Смысл её работы заключается в том, что грунт, находящийся между рёбрами, под давлением здания уплотняется и включается в работу синхронно с горизонтальной частью конструкции — это даёт возможность уменьшить толщину бетона. Изгибающий момент приходится на центр плиты, в котором продольно всегда располагается промежуточное ребро, поэтому верхнюю зону требуется армировать более интенсивно.

На просадочных грунтах лучше всего работает плита с рёбрами вверх. Устроив поверх них монолитное перекрытие, можно получить железобетонное основание с коробчатым сечением, которое идеально противостоит неравномерным просадкам. Если подобных проблем на участке нет, такой вариант плиты используют при строительстве домов из низкоплотного ячеистого бетона, для которого любые подвижки основания чреваты трещинообразованием.

Плита с рёбрами вверх под газобетонные стены

Прежде всего, это удобно, так как рёбра в данном случае играют роль цоколя и позволяют поднять выше уровень пола первого этажа. Если проблем с просадочностью грунта нет, цокольное перекрытие делают не монолитное, а балочное, что позволяет обеспечить доступ к расположенным под полом трубам в случае необходимости ремонта. Так как в рёбрах имеется дополнительное армирование, горизонтальная часть плиты тоже может проектироваться с меньшей толщиной.

Естественно, в каждом случае расчет арматуры для плитного фундамента производится индивидуально, и никакого общего рецепта здесь быть не может. Разве что даются какие-то общие рекомендации, на которых, собственно и построен принцип работы онлайн калькулятора.

Плюсы и минусы

Устройство каждого вида плиты имеет свои резоны, но в общих чертах список достоинств и недостатков данной конструкции таков:

Плюсы Минусы
Главным достоинством плитных фундаментов является их высокая несущая способность, возможность устройства в сложной гидрогеологической обстановке, в том числе при высоком УГВ. Высокая материалоёмкость.
При условии правильного расчёта с учётом характеристик грунта, исключается крен и вероятность неравномерной просадки. Высокая себестоимость по сравнению с лентами мелкого заложения и ростверками на столбах.
Ребристая структура даёт возможность получить экономию бетона, но при этом очень важен правильный расчёт арматуры. При наличии рёбер жёсткости, опалубку приходится формировать дважды.
Если плита поверхностная, кладка стен может осуществляться без цоколя. При этом тело плиты одновременно будет выполнять функции чернового пола. Заливку рёбер невозможно произвести одновременно с плитой, поэтому времени на формирование ребристого фундамента уходит больше.
При возведении дома с подвалом или цокольным этажом, роль направленных вверх рёбер играют стены. В данном случае этот вид плиты единственно возможный, и он обеспечивает заглублённой части дома идеальную жёсткость. Теоретически плиту можно устроить и на неровном рельефе, но на практике этого никто не делает, потому что дорого и технически сложно.
Если подвал не нужен, всегда есть возможность сделать плиту в незаглублённом варианте, а это существенная экономия на земляных работах. Наиболее трудоёмкой получается плита с коробчатым сечением: в виде чаши с монолитным перекрытием. Но это самый надёжный фундамент для просадочных грунтов.
Благодаря совмещению плиты с фундаментными лентами (снизу или сверху), есть возможность уменьшить толщину горизонтальной части и тем самым сэкономить на количестве заливаемого бетона. Вводы под коммуникации, электроэнергию и слаботочные линии прокладываются под плитой, в песчаном подстилающем слое, и в процессе эксплуатации доступа к ним нет. Поэтому профессиональное проектирование обязательно, и оно должно предусматривать резервные линии на случай выхода из строя основных трубопроводов.
Благодаря поверхностному расположению монолита и небольшой толщине, минимальный расход пиломатериалов на опалубку.  

Калькулятор веса арматуры

Сервис KALK.PRO предлагает вам использовать калькулятор арматуры онлайн на нашем сайте – вы получите результат ! Калькулятор позволяет выполнить расчет веса арматуры по известной длине (за метр), или же наоборот, рассчитать сколько метров содержится в тонне арматуры. Нормативная база для выполнения расчета основана на таблицах ГОСТ 5781-82 (устарел) и ГОСТ 34028-2016 (актуален). На выходе вы получите точные результаты, которые позволяют использовать их при составлении проектно-сметной документации и оформления дальнейшего заказа в производственную организацию.

Если вам необходимо определить количество арматуры для строительства основания – рекомендуем воспользоваться отдельными калькуляторами:

  • расчет арматуры на ленточный фундамент;
  • расчет арматуры на монолитную плиту.

В расчетах используются все возможные диаметры арматуры, такие как 6, 8, 10, 12, 14, 16, 20 и т. д. При необходимости, вы сразу же можете воспользоваться марочником металлов или заглянуть в ГОСТы, в соответствующих вкладках инструмента.

По умолчанию рассчитывается вес 1 метра арматуры.

Расчет веса арматуры

  1. Выберите тип металла (по умолчанию Сталь).
  2. Подтвердите тип сортамента – Арматура.
  3. Выберите способ расчета – Расчет веса.
  4. Выберите нормативный документ – ГОСТ 5781-82 / ГОСТ 34028-2016.
  5. Укажите диаметр хлыста арматуры, мм.
  6. Введите длину металлопроката, м.

Перевод арматуры из тонн в метры

  1. Выберите тип металла (по умолчанию Сталь).
  2. Подтвердите тип сортамента – Арматура.
  3. Выберите способ расчета – Расчет длины.
  4. Выберите нормативный документ – ГОСТ 5781-82 / ГОСТ 34028-2016.
  5. Укажите диаметр хлыста арматуры, мм.
  6. Введите массу металлопроката, кг.

Как рассчитать массу самостоятельно?

Определить вес арматуры можно и самостоятельно. Например, для расчета 1 погонного метра необходимо использовать выражение:

Формула расчета арматуры: m = π × (D2 / 4) × ρ

  • π – число Пи;
  • D – диаметр арматуры, мм;
  • ρ – плотность стали (7850 кг/м3).

Таблица веса арматуры

Диаметр, мм Вес метра, кг Метров в тонне
0.222 4504.51
0.395 2531.65
0.617 1620.75
0.888 1126.13
1.21 826.45
1.58 632.92
2.00 500.00
2.47 404.86
2.98 335.58
3.85 259.75
4.83 207.04
6.31 158.48
7.99 125.16
40 9.87 101.32
45 12.48 80.13
50 15.41 64.90
55 18.65 53.62
60 22.19 45.07
70 30.21 33.11
80 39.46 25.35

Классы арматуры

Класс арматурной стали Диаметр профиля, мм Марка стали
A-I (A240) 6-40 Ст3кп, Ст3пс, Ст3сп
A-II (A300)

10-40

40-80

Ст5сп, Ст5пс

18Г2С

Ac-II (Ac300)

10-32 (36-40)

10ГТ
A-III (A400)

6-40

6-22

35ГС, 25Г2С

32Г2Рпс

A-IV (A600)

10-18 (6-8)

10-32 (36-40)

80С

20ХГ2Ц

A-V (A800)

(6-8)

10-32 (36-40)

23Х2Г2Т
A-VI (A1000) 10-22 22Х2Г2АЮ, 22Х2Г2Р, 20Х2Г2СР

Данные таблиц основаны на материалах из ГОСТ 5781-82 «Сталь горячекатаная для армирования железобетонных конструкций» и ГОСТ 34028-2016 «Прокат арматурный для железобетонных конструкций».

Как воспользоваться калькулятором?

Стандартный калькулятор металла на нашем сайте позволит точно рассчитать вес интересующих вас изделий. Наши клиенты имеют возможность вычислить массу продукции, указав определенную длину и размеры. Калькулятор функционирует в онлайн-режиме, а также доступен для скачивания. Чтобы рассчитать массу продукции, вам достаточно выбрать:

  • интересующую марку стали;
  • сортамент металлопроката;

И далее — указать размеры сторон. Данное приложение дает возможность определить вес продукта почти всех существующих марок стали: черной, цветной и нержавеющей. Онлайн-калькулятор позволит определить массу изделий из сплавов меди, бронзы, алюминия и других. Наши клиенты смогут вычислить вес круга, прутка, ленты, листового металла, плиты, балок, круглой и профильной трубы. Удобный виджет демонстрирует, какие конкретно характеристики требуются для дальнейшего расчета. Каждый вид металлопроката имеет дополнение в виде схематического изображения его среза с отображением в виде букв каждой полочки, грани и т.д. В качестве единицы измерения размеров используется миллиметр, вес вычисляется в килограммах с точностью до второго знака после запятой.

Виды и размеры

Существует две основные разновидности арматуры:

  • Металлическая.
  • Композитная.

Металлические стержни, используемые для сборки арматурного каркаса, имеют ребристую или гладкую поверхность.

Ребристые стержни идут на горизонтальную (рабочую) арматуру, так как они имеют повышенную силу сцепления с бетоном, необходимую для качественного выполнения своих функций.

Вертикальные прутки, как правило, гладкие, так как их задача сводится к поддержанию в нужном положении рабочих стержней до момента заливки. Диаметр стержней колеблется в пределах от 5,5 до 80 мм. Для частного домостроения используются рабочие стержни 10, 12 и 14 мм и гладкие 6-8 мм.

Композитная арматура состоит из разных элементов:

  • Стекло.
  • Углерод.
  • Базальт.
  • Арамид.
  • Полимерные добавки.

Наиболее широко применяется стеклопластиковая арматура.

Она имеет наибольшую прочность, самая жесткая и устойчивая к растягивающим нагрузкам из всех остальных вариантов.

Как и все виды композитных стержней, стеклопластиковая арматура полностью устойчива к воздействию влаги.

Производители заявляют о неизменности эксплуатационных качеств в течение всего периода службы, но на практике справедливость такого утверждения пока не проверена. Проблема композитной арматуры в сложности технологии, из-за которой качество материала у разных производителей заметно отличается.

Кроме того, композитные стержни не способны сгибаться, что неудобно при сборке каркасов и снижает прочность угловых соединений каркаса.

ВАЖНО! Среди строителей отношение к композитной арматуре сложное. Не отрицая положительных качеств, они не слишком доверяют малоизученным строительным материалам, не прошедшим полный цикл эксплуатации. Кроме того, металлическая арматура имеет вполне определенные технические характеристики, тогда как композитные виды обладают довольно большим разбросом свойств

Все эти факторы ограничивают применение композитных стержней

Кроме того, металлическая арматура имеет вполне определенные технические характеристики, тогда как композитные виды обладают довольно большим разбросом свойств. Все эти факторы ограничивают применение композитных стержней.

Чем соединять

При укладке армирующих поясов продольные и поперечные составляющие необходимо каким-то образом соединять. Это делают двумя способами: сваркой и вязкой с помощью проволоки.

Сварка — быстрый способ, но не самый лучший. Дело в том, что местах, которые подверглись  воздействию высоких температур, сталь более подвержена коррозии. Это в условиях укладки в бетон — очень плохое качество.

Соединять арматуру можно при помощи сварки или проволокой

Если и еще один минус сварного соединения арматуры — во время заливки или трамбовки раствора есть довольно реальные шансы нарушить соединение. Оно обычно носит точечный характер и обломать его можно.

Соединенные сваркой элементы каркаса имеют большую прочность, но такое основание лишено возможности реагировать на подвижки грунта. А это ведет к образованию напряжений в бетоне и появлению трещин. Потому делаем вывод: на пучнистых и сыпучих грунтах лучше использовать вязку.

Вязка арматуры при помощи проволоки проводится вручную. Есть некоторые приспособления, облегчения процесса — крючки, клеши, пистолеты. Но все равно процесс занимает приличное количество времени.

Подробнее о том, как вязать арматуру для фундамента, читайте тут.

Расчет диаметра арматуры для фундамента

Расчет диаметра поперечной и вертикальной арматуры

Диаметр поперечной и вертикальной арматуры необходимо подбирать согласно таблице:

В строительстве одно- двухэтажных частных домов, как правило, в качестве вертикальной и поперечной арматуры используются стержни диаметром 8 мм, и этого обычно бывает вполне достаточно для ленточных фундаментов малоэтажных частных строений.

Расчет диаметра продольной арматуры

Согласно СНиП 52-01-2003, минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты. От этого правила и необходимо отталкиваться при выборе диаметра арматуры для фундамента.

С площадью сечения железобетонной ленты все понятно, необходимо ширину фундамента умножить на его высоту, т.е. допустим у вас ширина ленты 40 см, а высота 100 см (1 м), то площадь сечения будет 4000 см 2 .

Площадь сечения арматуры должна быть 0,1% от площади сечения фундамента, поэтому необходимо полученную площадь 4000 см 2 / 1000 = 4см 2 .

Для того чтобы не рассчитывать площадь сечения каждого прута арматуры, можно воспользоваться простенькой табличкой. С помощью нее легко можно подобрать необходимый диаметр арматуры для фундамента.

В таблице присутствуют очень незначительные неточности, связанные с округлением чисел, не обращайте на них внимание

Важно: При длине ленты менее 3м, минимальный диаметр продольных стержней арматуры должен составлять 10мм.При длине ленты более 3м, минимальный диаметр продольной арматуры должен приниматься 12мм. И так, у нас есть минимальная расчетная площадь поперечного сечения арматуры в сечении ленточного фундамента, которая равна 4см 2 (это с учетом количества продольных стержней)

И так, у нас есть минимальная расчетная площадь поперечного сечения арматуры в сечении ленточного фундамента, которая равна 4см 2 (это с учетом количества продольных стержней).

При ширине фундамента 40 см, нам достаточно использовать схему армирования с четырьмя стержнями. Возвращаемся к таблице и смотрим в столбце, где приведены значения для 4-х стержней арматуры, и выбираем наиболее подходящее значение.

Таким образом, определяем, что для нашего фундамента шириной 40см, высотой 1м , со схемой армирования четырьмя стержнями наиболее подходящая арматура диаметром 12мм , так как 4 прута такого диаметра будут иметь площадь сечения 4,52 см 2 .

Расчет диаметра арматуры для каркаса с шестью стержнями проводится аналогичным образом, только значения уже берутся из столбца с шестью стержнями.

Следует отметить, что продольная арматура для ленточного фундамента должна быть одного диаметра. Если по каким-либо причинам арматура у Вас разного диаметра, то стержни большего диаметра необходимо использовать в нижнем ряду.

Выводы:

В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.

Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.

Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.

Заключение

Грамотно выбранная схема армирования и сам материал обеспечивают прочность и устойчивость ленты к возможным нагрузкам.

Сложные и проблемные грунты, склонные к пучению или сезонным подвижкам, требуют ответственного и внимательного подхода к армированию ленты.

Необходимо учитывать, что все расчетные значения определяют минимальные параметры конструкции, требующие некоторого увеличения для определенного запаса прочности.

Выбирая арматуру и схему армирования, надо умножать все значения на 1,2-1,3 (коэффициент надежности), чтобы снизить риск появления непредвиденных факторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector